Context pressure with MCP

Patterns and trade-offs

Danilo Poccia (he/him)
Chef Evangelist (EMEA)

What is the problem?

aws

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agent Loop

Loop

aws

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Model Context Protocol (MCP) Tools
a I

»
>

=

> © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved

MCP solves a problem but introduces a new one

« Asingle MCP server can expose
many tools

« Each tools add its own syntax and
description (how to use it) to the
system prompt

* For example, just Playwright MCP
adds
« 22 core + 12 optional = 34 tools
* Tool description > 9K tokens

* Just 10 MCP server can fill up the
context window

aWwWs 5

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agent Context

Context is everything the model sees when making a decision:
system prompts, tool definitions, conversation history, retrieved
data, and tool results. It's the model's working memory.

« Context engineering is the discipline of deciding what belongs in that
working memory at any given moment, and what doesn't

« Context pressure is what happens when the things we want the model
to see compete for space with things we must include, including MCP

tool definitions

Context is scarce — Your computer has GBs of RAM, but a model's
working memory is roughly equivalent to a long novel

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What happens when the context fills up?

« Usual approach is conversation compaction via summarization

After -- .

« Context looses details each time the conversation is summarized
« Some tool show the summary, good for understanding and debugging

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved

What about the solutions?

Tool Optimization

Description must be clear Token-efficient results
« Use unambiguous parameter names * Return the minimum amount of
 user_id not user information
« Explicit context about when to use or « Return semantically meaningful fields
avoid tools rather than technical details
* Include specialized query formats and * Names, descriptions, relevant IDs

instead of low-level IDs or UUIDs

« Avoid overwhelming context with
irrelevant data

niche terminology definitions
 Domain knowledge
« Add concrete examples for complex .
« Implement pagination, range

parameters
, e selection, and filtering and reranking
 If they can't be simplified in tool responses

« Don’'t add tools to do so

Similar to how a human would interact with a large amount of information

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“Light Browser”

A lightweight web browser
designed for humans (CLI/TUI) and
Al agents (MCP)

Prioritizes content extraction over
visual fidelity, making web content
accessible in bandwidth-
constrained environments

https://github.com/danilop/light-browser

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Browse

URL: https://company.com
Query: ways to reach support

Query Result

email addresses,
phone numbers,
contact forms, ...

—

Vector
Store

—

https://github.com/danilop/light-browser
https://github.com/danilop/light-browser
https://github.com/danilop/light-browser
https://github.com/danilop/light-browser
https://github.com/danilop/light-browser

Multi-agent solutions and subagents

aws

N

Use more than one agent
« Each agent has their own context and access to a subset of tools

« The amount of information passed between agents should be less than
the overall context of each agent

Works well when agents are focused on separate tasks

« Research subagents
* Getininput a query and retrieve a lot of content and extract what you need

« Agents taking a decision, computing a score, or applying classification

11

Multi-agent architectures

« Agents-as-tools

« Hierarchical systems where specialists serve as intelligent tools
« Each agent has access only to a subset of the tools and MCP servers
« Pattern: MCP + A2A using the Agent Card for Tool Definition

* Graphs
 Structured workflows with deterministic execution paths

« Swarms
« Autonomous collaboration with self-organizing teams of agents

 Meta agents
« Dynamic agents that can modify their own orchestration behavior

S Strands Agents using dynamic orchestration
with meta agents

from strands import Agent
from strands tools iImport graph, swarm, use agent, think, workflow

meta agent = Agent (
system prompt="""You can dynamically create specialized agents
and orchestrate complex workflows.""",
tools=[graph, swarm, use agent, think]

Agents are created with tools and used as tools

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

13

Optimizing context for each agent

* Proactive memory curation

« Compaction/summarization after @ e
an isolated task has completed |
« When you only need to remember 2nd message / \ 3‘15?;';22‘:;
the outcome, not the internal
details / A
O O
« State management 31 message Alternative

3rd messages

« Checkpointing
« Branching

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 14

Agents take notes

 Newer models have been trained to use files
« Specific implementation plans
« Specifications and requirements
* Track technical and non-technical decisions

« Notes can be found and read on demand

* In the same session, after compaction
 In the next sessions, as a sort of long-term memory

« This approach can also reduce the number of
tools

* For example, instead of adding a specific task manager
tool, ask the model to keep tasks in a file

15

Simplify / reduce tools

* Models know how to use common CLI and SDK tools

» They can write code and scripts
» Less overhead, no need for new tool descriptions

* For example: git, gh, glab, AWS CLI and SDK, ...

* For security, you need a sandbox environment

* Code interpreter with terminal access
* Fine tune third-party permissions

* Multimodal content can add overhead
« But images can bring more information than tokens

« Use a single semantic space for information retrieval

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved

16

“SemStash”

Semantic storage
for humans and Al agents

« REST API

« MCP Server

« Python API

« Command line interface (CLI)

https://github.com/danilop/semstash

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Interfaces

RESTAPI | | MCPServer | | Python API

7l SemSta/sﬁ/C@A)
{ |

SemStash Client

Presign{lad URLs Storage Manager | ‘ Embedding Generator

/ 1 AWS Services i
| - AE

7| Amazon Bedrock
S3 Bucket . S3 Vectors Nova Multimodal
Content Storage | Embeddings Embeddings

https://github.com/danilop/semstash
https://github.com/danilop/semstash
https://github.com/danilop/semstash

Deferred loading (Lazy loading)

« A mechanism about when information enters context

 Including domain knowledge, repeatable workflows, new capabilities,
and tool definitions

« Full instructions and schemas aren't loaded until the agent actually needs
them

* Implementation
 Lightweight index/stubs upfront, full definitions fetched on-demand

 Examples
« Agent Skills
» Kiro Powers

> © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved 18

Agent Skills

A skills-compatible agent needs to:

1. Discover skills in configured directories
Load metadata (name and description) at startup
Match user tasks to relevant skills
Activate skills by loading full instructions
Execute scripts and access resources as needed

AW

Frontmatter: When to activate

name: skill-name
description: A description of what this skill does and when to use 1it.

Explaination of the skill and pf tools, CLI/SDK, scripts...

aws

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RIR© Powers

A Kiro power is a unified bundle that gives access to specialized
knowledge and includes:

* A steering file (POWER.md)
« MCP server configuration

« Steering/hooks - Automated tasks that run on events (optional)

Frontmatter: When to activate

name: "supabase"

displayName: "Supabase with local CLI"

description: "Build fullstack applications with..."

keywords: ["database", "postgres", "auth", "storage", "realtime",

aws

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved

20

Progressive disclosure

An information architecture pattern about how much is
revealed at each stage

Information is layered
« Tool categories — Tool names — Descriptions — Full schemas
« Steer agents via context-aware guidance

E[]0]ES

« Agent Skills — Scripts, Resources, Assets
* MCP search tools

« AgentCore Gateway semantic search

« Episodic memory in AgentCore Memory

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

21

S Strands Agents Steering — Tool Steering

When agents attempt tool calls, steering handlers evaluate the action

Proceed

R Tool
Executes
Tool Call Before Tool Before Tool Guide ~ Cancel +

—_— B —— >

Attempt Call Event Handler Feedback

] Input

Lifecycle Hook Steering Handler
aws 22

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Strands Agents Steering — Model Steering

After each model response, steering handlers evaluate output

Proceed

, Response
Accepted
Model After Model After Model
S —_—
Response Call Event Handler
Guide ~ Discard +
Retry

Lifecycle Hook Steering Handler

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 23

from strands import Agent, tool
from strands.experimental.steering import LLMSteeringHandler

@tool

def send emaill (recipient: str, subject: str, message: str) -> str:
"""Send an email to a recipient."""
return f"Email sent to {recipient}"

handler = LLMSteeringHandler (system prompt="""
You are providing guidance to ensure emaills maintain a positive tone:
- Review emaill content for tone and sentiment
- Suggest more cheerful phrasing 1f the message seems negative or neutral
- Encourage use of positive language and friendly greetings
When agents attempt to send emails, check if the message tone
1s appropriately cheerful and provide feedback i1f improvements are needed.

mwiiwn

agent = Agent (tools=[send email],|hooks=[handler]]|)
response = agent ("Send a frustrated email to tom@example.com, a client who ...")
print (agent.messages) # "Tool call cancelled given new guidance...”

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 24

Amazon Bedrock AgentCore Platform

Any provider

Runtime — |dentity ” Policy
APP L—I — Prompt { i T
Ay s @ Gateway @ Mcp
Any model «—— framework—% Tooks ii‘_Tools / /?
i B Context |
Any agent — e I TR Eg@ Browser
A2A - |)
E% Memory | Eg?'@ Code Interpreter
E%Di?ﬁ Observability OTEL
Eg Evaluations
aws I
~— © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

25

2l AgentCore Gateway

N
Agent
~ MCP
(MCP Client/
List tools,
Invoke tool,
Search

aws

N 2) © 2026, Amazon Web Ser

AgentCore
Gateway

G

-

:

~

API Endpoint

APIls, tools, resources

Tool 1

Tool 2

Target

vices, Inc. or its affiliates. All rights reserved.

AWS Lambda 1

Tool 3

Tool 4

Target J

Tool 5

Tool 6

RESTful services
with OpenAPI schema

Lambda functions

26

&l)- AgentCore Gateway semantic search

Services may have 100s of tools

MCP list tools K \ - ’ N

Without search | > | AgentCore | «—— Target 1 250 tools
returns all 300+ tools Gateway) -

% D Target 2 100 tools
Search: “create a social media post” ; i

Using search ” - Target 3 10 tools
returns 4 most relevant tools _ Y - g

Benefits

« AgentCore Gateway automatically indexes tools and
gives serverless semantic search

* Reduces context passed to the agent’s LLM,
improving accuracy, speed, and cost

« Lets agent focus on tools relevant for a given task

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Y

@% AgentCore Memory

AgentCore Memory

.)
Agent Implementation Short term Memory é
4 p
Agent Events _ _ _ ___ sync [Chat Messages] async |
| | >
() i
' [Messages] ' [Session State] AUIDIATEIE
I I Memory
sync :
p(l/l;/\h N : [Agent State] ' Extraction
ﬁg} —_— L) y async Module
ong term Memor <
<> o ’
e D -
L) List A \ Semantic]
Events < (N\
N J User Preferences]
e) D ()
Retrieve _| sync Summary
Memory Records | .
g Episodic direct
g y \ P [WIS I Batch API for
f \ long-term Memory
Custom Strategy hydration
aws \S J

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 28

@% AgentCore Memory - Episodic Memory

Episodic memory strategy

&h Extraction | Consolidation Reflection 3¢
0 | | | o |

|4l

Short-term | Analyze ages to deter | Organizes extracted informatior Analyzes S across episodes Long-term ‘ { Memory
on nto structured episodes [to he n and make ‘ ‘

memory SR : memory | | retrieval
| | petter decisions | |

Write to |

Avoid repeating mistakes without filling the system prompt of all possible scenarios

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 29

B User Interaction Layer

“Semantic Summarizing
Conversation Manager”

2 Processing Layer

Context Intercept &
Overflow Enrich

Combines Summarization With Conversation Manager
exact message recall using

detection « Intercepts messages
n t e h « Summarization « Searches semantic index
Se l I I a I C Se a rc coordination « Enriches with context

« Storage orchestration

<) Memory Hook

Archive Retrieve Index

[storage Layer

 Active Messages B Agent State il Semantic Index

Current visible archived_messages embeddings
conversation full history searchable

https://github.com/danilop/strands-agents-sema ntic-summarizing—conversation—manager/

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager

Runtime controls

« Too much information in the context, including too many tools,
can increase errors

 When the tools is used, how safe is that? Risk assessment
« Sandbox for code interpreter and shell access

« Validate tools access using the user identity and access policies
* Who can use a tool and with which parameters
« Automated reasoning to evaluate policies

 Examples
« AgentCore ldentity, Policy in AgentCore
« Cedar - Open source policy language

aws

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved

31

AgentCore Identity

A

User

Your agent needs
to access resources Agent AWS
¢ Outbound Auth > resource/agents
(IAM) L (through IAM)

Your Gateway needs
to access downstream

l Your users need to
access the agent

~, Your agent needs resources
To access resources

Agent Agent

through an application Agent

¢ Inbound EGER/ ‘ Outbound Auth fateway ’ AgentCorel Gateway

= MG self-hosted) (OAuth/API key) Inbound Auth REEIENEVAULIDAN Outbound Auth
A
pp)
OAuth Token

External
Agent resources/agents
User Identit gq Outbound Auth > (through OAuth,

Provider : Your agent needs (OAuth/API key) { API keys, and
So on)

aws

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

to access resources

32

PREVIEW

@ Policy in AgentCore

Protected
@ Requested Allowed resources
ﬁ(\’\’\r\ tool calls tool calls Tools. APIs
[m] N /] [}
) — i g} > [E@} AgentCore GatewayJ . Systems,
User <~ Data
Agents and other
MCP clients I Allow / deny
4 P -)
l Policy in AgentCore | Policy Lifecycle O
Management m
AgentCore Dynamic policy M) - C——
UI]U . - - e . 2 R .
Observability evaluation @ Policy Authoring Policy
Q (Natural language or Admin
Y Cedar))
\ J
Keep agents in bounds Instant and consistent Verifiably correct
Act autonomously, but stay within Policies evaluated in milliseconds, Built on years of automated
boundaries and compliance without slowing agents reasoning, using Cedar
aws

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 33

Tool call: process refund (amount=300)

permit (
principal i1s AgentCore::0AuthUser,
action == AgentCore::Action::"RefundTool process refund",
resource == AgentCore::Gateway::"arn:aws:bedrock-agentcore:..."
)
when {
principal.hasTag ("group") &é&
principal.getTag ("group") == "admin" &é&

context.input.amount < 500

b i

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 34

Evaluations

* [tis easier to evaluate a response than to build it

 To be sure that context and tool optimizations work as expected
 LLM as judge
« Simulated users

« Metadata can help and simplify evals
* Such as sources and citations for (agentic) RAG

 Examples
« Strands Agents Evaluations
« AgentCore Evaluations

> © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved

35

8 Strands Agents Evaluations

aws

N

An evaluation framework for systematically testing and benchmarking agents.

Define test cases and evaluators,
execute them against any task
function

Collect structured results for
comparison and regression
testing

Uses LLM-as-judge pattern
where evaluators assess outputs
against natural language rubrics

Supports evaluation across
levels using 8 built-in evaluators

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

]

[oo —

Agent

=
IFCT%\/_
S

Test Cases

A 4

L 2 4

_

Evaluator

Dataset

e o

o

o ===

0 e
—_—

=
0 =
0 e

| C—

Run Evals

—

lsmn

Evaluation
Report

36

v Select evaluators

more built-in or

ot v Response quality evaluators (1/8)
gentCore Evaluations
Evaluates whether the information in the agent's response is factually accurate
Helpfulness

Evaluates from user's perspective how useful and valu

Conciseness
Evaluates whether the response is appropriately brief without missi

Instruction following
Measures how w ent

PREVIEW

v Task completion evaluators (1)

Goal S
Evaluat

v Component-level evaluators (1/2)

Vg N\ Tool Selection Accuracy

Evaluates whether the agent selected the ap

v Safety evaluators (1/2)

S AgentCore Evaluations

» Custom evaluators (0)
Select an existing custom evaluator ci

Agent AgentCore Runtime

I
I
I Lo :)
User I 5 Call LLM judge ;
! for each metric 5)
— L P T On-demand
1 A 4 1
I . N <
1 AgentCore Memory Write results with ; Agent
I 1 . . :
: | judge explanation J owner
\. y J
A
Agentcore Gateway i IntentResolution
[| W
:l @ AgentCore Observability
aWS Not atall (1/5) == Not generally (2/5) == Neutral/Mixed (3/5) == Generally yes (4/5) == Yes (5/5)

N > © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Path to production

aws

N 2) © 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The prototype to production “chasm”

Exutemen't Challenges on the path to production Meaningful business value
and potential

OS] =

deole Performance Scalability Security Governance Al production
agents

aws

N > © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 39

Amazon Bedrock AgentCore

Comprehensive agentic platform: Everything you need for getting agents into production

y
y
4

Runtime Memory Identity Gateway Code Browser Observability Policy Evaluations
Interpreter

aws

N > © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 40

AgentCore Runtime

Agent or tool code

__

__

———

AgentCore Runtime decorator
¢ AgentCore Observability config
AgentCore Identity config

configure

o

aws

N

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

SR P —
Docker s Amazon ECR
file . Repository

L —
Code-zip : Amazon S3
upload | | Bucket

User Application

AgentCore Runtime

- e
launch
> ; AgentCore Runtime !
- Agent
launch §J® AgentCore Runtime
! B) Endpoint '
.
invoke

41

Deploying to a prototype agent to a remote
stateless environment

* Forces to think about

User authentication and authorization

Session management and retrieval

Short and long-term memory requirements (across sessions)
Observability (using OpenTelemetry)

Evaluations (to test non-deterministic output)

« Makes prototypes evolve towards production naturally

2) © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 42

LELGEWEVE

aws

N 2) © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

LELGENEVR
Context size is often the bottleneck
Use more than one agent to split context and tools
Simplify and reduce tools using notes and direct CLI/SDK access
Implement deferred loading and progressive disclosure
Introduce runtime controls for governance

Less can be more, use evals to confirm

2) © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 44

Thank you!

Danilo Poccia
@danilop

