
© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 1© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Patterns and trade-offs

Danilo Poccia (he/him)
Chef Evangelist (EMEA)

Context pressure with MCP

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 2© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is the problem?

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 3

Agent Loop

Input

Reasoning
(LLM)

Tool
Selection

Tool
Execution

Response

System
Prompt

Request

Tool
Definition

Loop

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 4

Model Context Protocol (MCP) Tools

Input

Reasoning
(LLM)

Tool
Selection

Tool
Execution

Response

System
Prompt

Request

Tool
Definition

MCP Tools

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 5

MCP solves a problem but introduces a new one

• A single MCP server can expose
many tools
• Each tools add its own syntax and

description (how to use it) to the
system prompt

• For example, just Playwright MCP
adds
• 22 core + 12 optional = 34 tools
• Tool description > 9K tokens

• Just 10 MCP server can fill up the
context window

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 6

Agent Context

• Context is everything the model sees when making a decision:
system prompts, tool definitions, conversation history, retrieved
data, and tool results. It's the model's working memory.
• Context engineering is the discipline of deciding what belongs in that

working memory at any given moment, and what doesn't
• Context pressure is what happens when the things we want the model

to see compete for space with things we must include, including MCP
tool definitions

• Context is scarce – Your computer has GBs of RAM, but a model's
working memory is roughly equivalent to a long novel

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 7

What happens when the context fills up?

• Usual approach is conversation compaction via summarization

• Context looses details each time the conversation is summarized
• Some tool show the summary, good for understanding and debugging

User Assistant Tool
Request(s)

Tool
Response(s) Assistant AssistantUser . . .

Summary Last N
messages . . .

Before

After

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 8© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What about the solutions?

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 9

Tool Optimization

Description must be clear
• Use unambiguous parameter names

• user_id not user
• Explicit context about when to use or

avoid tools
• Include specialized query formats and

niche terminology definitions
• Domain knowledge

• Add concrete examples for complex
parameters
• If they can’t be simplified
• Don’t add tools to do so

Token-efficient results
• Return the minimum amount of

information
• Return semantically meaningful fields

rather than technical details
• Names, descriptions, relevant IDs

instead of low-level IDs or UUIDs
• Avoid overwhelming context with

irrelevant data
• Implement pagination, range

selection, and filtering and reranking
in tool responses

Similar to how a human would interact with a large amount of information

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 10© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“Light Browser”

A lightweight web browser
designed for humans (CLI/TUI) and
AI agents (MCP)

Prioritizes content extraction over
visual fidelity, making web content
accessible in bandwidth-
constrained environments

https://github.com/danilop/light-browser

Browse

Browse

URL: https://company.com
Query: ways to reach support

Query Result

email addresses,
phone numbers,
contact forms, …

Vector
Store

Prototype

https://github.com/danilop/light-browser
https://github.com/danilop/light-browser
https://github.com/danilop/light-browser
https://github.com/danilop/light-browser
https://github.com/danilop/light-browser

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 11

Multi-agent solutions and subagents

• Use more than one agent
• Each agent has their own context and access to a subset of tools
• The amount of information passed between agents should be less than

the overall context of each agent

• Works well when agents are focused on separate tasks
• Research subagents

• Ge tin input a query and retrieve a lot of content and extract what you need
• Agents taking a decision, computing a score, or applying classification

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 12

Multi-agent architectures

• Agents-as-tools
• Hierarchical systems where specialists serve as intelligent tools
• Each agent has access only to a subset of the tools and MCP servers
• Pattern: MCP + A2A using the Agent Card for Tool Definition

• Graphs
• Structured workflows with deterministic execution paths

• Swarms
• Autonomous collaboration with self-organizing teams of agents

• Meta agents
• Dynamic agents that can modify their own orchestration behavior

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 13

Strands Agents using dynamic orchestration
 with meta agents

from strands import Agent
from strands_tools import graph, swarm, use_agent, think, workflow

meta_agent = Agent(
 system_prompt="""You can dynamically create specialized agents
 and orchestrate complex workflows.""",
 tools=[graph, swarm, use_agent, think]
)

Agents are created with tools and used as tools

Open Source

Model Agnostic

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 14

Optimizing context for each agent

• Proactive memory curation
• Compaction/summarization after

an isolated task has completed
• When you only need to remember

the outcome, not the internal
details

• State management
• Checkpointing
• Branching

1st message

2nd message Alternative
2nd message

Alternative
3rd messages

3rd message

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 15

Agents take notes

• Newer models have been trained to use files
• Specific implementation plans
• Specifications and requirements
• Track technical and non-technical decisions

• Notes can be found and read on demand
• In the same session, after compaction
• In the next sessions, as a sort of long-term memory

• This approach can also reduce the number of
tools
• For example, instead of adding a specific task manager

tool, ask the model to keep tasks in a file

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 16

Simplify / reduce tools

• Models know how to use common CLI and SDK tools
• They can write code and scripts

• Less overhead, no need for new tool descriptions
• For example: git, gh, glab, AWS CLI and SDK, …
• For security, you need a sandbox environment

• Code interpreter with terminal access
• Fine tune third-party permissions

• Multimodal content can add overhead
• But images can bring more information than tokens

• Use a single semantic space for information retrieval

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 17© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“SemStash”

Semantic storage
for humans and AI agents

• REST API
• MCP Server
• Python API
• Command line interface (CLI)

https://github.com/danilop/semstash

Prototype

https://github.com/danilop/semstash
https://github.com/danilop/semstash
https://github.com/danilop/semstash

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 18

Deferred loading (Lazy loading)

• A mechanism about when information enters context
• Including domain knowledge, repeatable workflows, new capabilities,

and tool definitions
• Full instructions and schemas aren't loaded until the agent actually needs

them

• Implementation
• Lightweight index/stubs upfront, full definitions fetched on-demand

• Examples
• Agent Skills
• Kiro Powers

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 19

Agent Skills

A skills-compatible agent needs to:
1. Discover skills in configured directories
2. Load metadata (name and description) at startup
3. Match user tasks to relevant skills
4. Activate skills by loading full instructions
5. Execute scripts and access resources as needed

name: skill-name
description: A description of what this skill does and when to use it.

Explaination of the skill and pf tools, CLI/SDK, scripts...

Frontmatter: When to activate

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 20

Powers

A Kiro power is a unified bundle that gives access to specialized
knowledge and includes:
• A steering file (POWER.md)
• MCP server configuration
• Steering/hooks - Automated tasks that run on events (optional)

name: "supabase"
displayName: "Supabase with local CLI"
description: "Build fullstack applications with..."
keywords: ["database", "postgres", "auth", "storage", "realtime", ...]

Frontmatter: When to activate

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 21

Progressive disclosure

• An information architecture pattern about how much is
revealed at each stage

• Information is layered
• Tool categories → Tool names → Descriptions → Full schemas
• Steer agents via context-aware guidance

• Examples
• Agent Skills → Scripts, Resources, Assets
• MCP search tools
• AgentCore Gateway semantic search
• Episodic memory in AgentCore Memory
• Strand Agents Steering (experimental)

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 22

Strands Agents Steering – Tool Steering
When agents attempt tool calls, steering handlers evaluate the action

Experimental

Tool Call
Attempt

Before Tool
Call Event

Before Tool
Handler

Tool
Executes

Cancel +
Feedback

Human
Input

Proceed

Guide

Interrupt

Lifecycle Hook Steering Handler

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 23

Strands Agents Steering – Model Steering
After each model response, steering handlers evaluate output

Model
Response

After Model
Call Event

After Model
Handler

Response
Accepted

Discard +
Retry

Proceed

Guide

Experimental

Lifecycle Hook Steering Handler

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 24

from strands import Agent, tool
from strands.experimental.steering import LLMSteeringHandler

@tool
def send_email(recipient: str, subject: str, message: str) -> str:
 """Send an email to a recipient."""
 return f"Email sent to {recipient}"

handler = LLMSteeringHandler(system_prompt="""
 You are providing guidance to ensure emails maintain a positive tone:
 - Review email content for tone and sentiment
 - Suggest more cheerful phrasing if the message seems negative or neutral
 - Encourage use of positive language and friendly greetings
 When agents attempt to send emails, check if the message tone
 is appropriately cheerful and provide feedback if improvements are needed.
 """
)

agent = Agent(tools=[send_email], hooks=[handler])

response = agent("Send a frustrated email to tom@example.com, a client who ...")

print(agent.messages) # "Tool call cancelled given new guidance...”

Strands Agents

Sample Code

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 25

Amazon Bedrock AgentCore Platform

App

Any model

Prompt

Tools

Context

Any
framework

Runtime Identity

Observability

Gateway

Browser

Code InterpreterMemory

Evaluations

Policy

Tools

MCP

Any provider

OTEL

A2A
Any agent

Model and

Agent Framework

Agnostic

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 26

Agent

MCP Client

AgentCore
Gateway

API Endpoint
Target

AWS Lambda
Target

RESTful services
with OpenAPI schema

Lambda functions

Tool 1

Tool 2

Tool 4

Tool 5

Tool 6

MCP
Tool 3

APIs, tools, resources

AgentCore Gateway

List tools,
Invoke tool,

Search

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 27

AgentCore Gateway semantic search

AgentCore
Gateway

Without search

Search: “create a social media post”

Target 1 250 tools

Target 2 100 tools

Target 3 10 tools

MCP list tools

returns 4 most relevant tools

Services may have 100s of tools

returns all 300+ tools

Using search

Benefits
• AgentCore Gateway automatically indexes tools and

gives serverless semantic search
• Reduces context passed to the agent’s LLM,

improving accuracy, speed, and cost
• Lets agent focus on tools relevant for a given task

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 28

Short term Memory

Chat Messages

Session State

Long term Memory

Semantic

User Preferences

Summary

Automatic
Memory

Extraction
 Module

AgentCore Memory

async

Agent Implementation

Messages

Agent State

List
Events

Events

Retrieve
Memory Records

sync

sync

sync

direct

Agent

Batch API for
 long-term Memory

hydration

async

Custom Strategy

Episodic

AgentCore Memory

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 29

AgentCore Memory – Episodic Memory

Avoid repeating mistakes without filling the system prompt of all possible scenarios

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 30© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“Semantic Summarizing
Conversation Manager”

Combines summarization with
exact message recall using
semantic search

https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager

Prototype

for Strands Agents

https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager
https://github.com/danilop/strands-agents-semantic-summarizing-conversation-manager

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 31

Runtime controls

• Too much information in the context, including too many tools,
can increase errors
• When the tools is used, how safe is that? Risk assessment
• Sandbox for code interpreter and shell access

• Validate tools access using the user identity and access policies
• Who can use a tool and with which parameters
• Automated reasoning to evaluate policies

• Examples
• AgentCore Identity, Policy in AgentCore
• Cedar – Open source policy language

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 32

Agent
(hosted/

 self-hosted)

AgentCore
Gateway (tools)

User

AWS
resource/agents
(through IAM)

Agent
Inbound

Auth
App

User Identity
Provider

Your users need to
access the agent

through an application

External
resources/agents
(through OAuth,

API keys, and
so on)

Gateway
Inbound Auth

Agent
Outbound Auth

(IAM)

Agent
Outbound Auth
(OAuth/API key)

Agent
Outbound Auth
(OAuth/API key)

AgentCore Identity

Gateway
Outbound Auth

OAuth Token

Your agent needs
To access resources

Your agent needs
to access resources

Your agent needs
to access resources

Your Gateway needs
to access downstream

resources

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 33

Policy in AgentCore

Requested
 tool calls

Policy in AgentCore

Dynamic policy
evaluation

Allow / deny

AgentCore
Observability

Allowed
tool calls

Agents and other
MCP clients

Tools, APIs,
Systems,

Data

Protected
resources

Policy Lifecycle
Management

Policy Authoring
(Natural language or

Cedar)

Policy
Admin

User

AgentCore Gateway

Keep agents in bounds
Act autonomously, but stay within

boundaries and compliance

Verifiably correct
Built on years of automated

reasoning, using Cedar

Instant and consistent
Policies evaluated in milliseconds,

without slowing agents

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 34

permit(
 principal is AgentCore::OAuthUser,
 action == AgentCore::Action::"RefundTool__process_refund",
 resource == AgentCore::Gateway::"arn:aws:bedrock-agentcore:..."
)
when {
 principal.hasTag("group") &&
 principal.getTag("group") == "admin" &&
 context.input.amount < 500
};

Tool call: process_refund(amount=300)

Cedar

Open Source

Policy Language

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 35

Evaluations

• It is easier to evaluate a response than to build it
• To be sure that context and tool optimizations work as expected
• LLM as judge
• Simulated users

• Metadata can help and simplify evals
• Such as sources and citations for (agentic) RAG

• Examples
• Strands Agents Evaluations
• AgentCore Evaluations

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 36

Agent

Test Cases

Evaluator

Dataset

Task Function

Run Evals Evaluation
Report

Strands Agents Evaluations

• Define test cases and evaluators,
execute them against any task
function

• Collect structured results for
comparison and regression
testing

• Uses LLM-as-judge pattern
where evaluators assess outputs
against natural language rubrics

• Supports evaluation across
levels using 8 built-in evaluators

An evaluation framework for systematically testing and benchmarking agents.

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 37

AgentCore Evaluations

Agent
User

AgentCore Evaluations

Write results with
 judge explanation

Call LLM judge
for each metric

AgentCore Observability

Agent
owner

Configure

Monitor and
assess

On-demand

AgentCore Runtime

AgentCore Gateway

AgentCore Memory

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 38© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Path to production

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 39

The prototype to production “chasm”

Performance Security GovernancePOC AI production
agents

Scalability

Excitement
and potential

Challenges on the path to production Meaningful business value

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 40

Amazon Bedrock AgentCore
Comprehensive agentic platform: Everything you need for getting agents into production

Runtime Memory Identity Gateway Code
Interpreter

Browser Policy EvaluationsObservability

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 41

Framework

Agent or tool code

Models

AgentCore Runtime decorator
+

configure

Docker
file

AgentCore Runtime

AgentCore Runtime
Endpoint

Amazon ECR
Repository

launch

Application

invoke

User

AgentCore Observability config

AgentCore Identity config

AgentCore Runtime
Agent

Code-zip
upload

Amazon S3
Bucket

launch

AgentCore Runtime

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 42

Deploying to a prototype agent to a remote
stateless environment
• Forces to think about
• User authentication and authorization
• Session management and retrieval
• Short and long-term memory requirements (across sessions)
• Observability (using OpenTelemetry)
• Evaluations (to test non-deterministic output)

• Makes prototypes evolve towards production naturally

AgentCore

Runtim
e

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 43© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Takeaways

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 44

Context size is often the bottleneck

Use more than one agent to split context and tools

Simplify and reduce tools using notes and direct CLI/SDK access

Implement deferred loading and progressive disclosure

Introduce runtime controls for governance

Less can be more, use evals to confirm

Takeaways

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved. 45

Thank you!

© 2026, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Danilo Poccia
@danilop

